3.263 \(\int (a+b x^3+c x^6)^p \, dx\)

Optimal. Leaf size=133 \[ x \left (\frac {2 c x^3}{b-\sqrt {b^2-4 a c}}+1\right )^{-p} \left (\frac {2 c x^3}{\sqrt {b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^3+c x^6\right )^p F_1\left (\frac {1}{3};-p,-p;\frac {4}{3};-\frac {2 c x^3}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^3}{b+\sqrt {b^2-4 a c}}\right ) \]

[Out]

x*(c*x^6+b*x^3+a)^p*AppellF1(1/3,-p,-p,4/3,-2*c*x^3/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^3/(b+(-4*a*c+b^2)^(1/2)))/((
1+2*c*x^3/(b-(-4*a*c+b^2)^(1/2)))^p)/((1+2*c*x^3/(b+(-4*a*c+b^2)^(1/2)))^p)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1348, 429} \[ x \left (\frac {2 c x^3}{b-\sqrt {b^2-4 a c}}+1\right )^{-p} \left (\frac {2 c x^3}{\sqrt {b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^3+c x^6\right )^p F_1\left (\frac {1}{3};-p,-p;\frac {4}{3};-\frac {2 c x^3}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^3}{b+\sqrt {b^2-4 a c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^3 + c*x^6)^p,x]

[Out]

(x*(a + b*x^3 + c*x^6)^p*AppellF1[1/3, -p, -p, 4/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^3)/(b + Sqrt[b
^2 - 4*a*c])])/((1 + (2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^3)/(b + Sqrt[b^2 - 4*a*c]))^p)

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1348

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n + c*x^(2*n))
^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[b^2 - 4*a*c, 2]))^F
racPart[p]), Int[(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]))^p, x], x] /
; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \left (a+b x^3+c x^6\right )^p \, dx &=\left (\left (1+\frac {2 c x^3}{b-\sqrt {b^2-4 a c}}\right )^{-p} \left (1+\frac {2 c x^3}{b+\sqrt {b^2-4 a c}}\right )^{-p} \left (a+b x^3+c x^6\right )^p\right ) \int \left (1+\frac {2 c x^3}{b-\sqrt {b^2-4 a c}}\right )^p \left (1+\frac {2 c x^3}{b+\sqrt {b^2-4 a c}}\right )^p \, dx\\ &=x \left (1+\frac {2 c x^3}{b-\sqrt {b^2-4 a c}}\right )^{-p} \left (1+\frac {2 c x^3}{b+\sqrt {b^2-4 a c}}\right )^{-p} \left (a+b x^3+c x^6\right )^p F_1\left (\frac {1}{3};-p,-p;\frac {4}{3};-\frac {2 c x^3}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^3}{b+\sqrt {b^2-4 a c}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 161, normalized size = 1.21 \[ x \left (\frac {-\sqrt {b^2-4 a c}+b+2 c x^3}{b-\sqrt {b^2-4 a c}}\right )^{-p} \left (\frac {\sqrt {b^2-4 a c}+b+2 c x^3}{\sqrt {b^2-4 a c}+b}\right )^{-p} \left (a+b x^3+c x^6\right )^p F_1\left (\frac {1}{3};-p,-p;\frac {4}{3};-\frac {2 c x^3}{b+\sqrt {b^2-4 a c}},\frac {2 c x^3}{\sqrt {b^2-4 a c}-b}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^3 + c*x^6)^p,x]

[Out]

(x*(a + b*x^3 + c*x^6)^p*AppellF1[1/3, -p, -p, 4/3, (-2*c*x^3)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^3)/(-b + Sqrt[b
^2 - 4*a*c])])/(((b - Sqrt[b^2 - 4*a*c] + 2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]))^p*((b + Sqrt[b^2 - 4*a*c] + 2*c*x^
3)/(b + Sqrt[b^2 - 4*a*c]))^p)

________________________________________________________________________________________

fricas [F]  time = 0.91, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (c x^{6} + b x^{3} + a\right )}^{p}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)^p,x, algorithm="fricas")

[Out]

integral((c*x^6 + b*x^3 + a)^p, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c x^{6} + b x^{3} + a\right )}^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)^p,x, algorithm="giac")

[Out]

integrate((c*x^6 + b*x^3 + a)^p, x)

________________________________________________________________________________________

maple [F]  time = 0.02, size = 0, normalized size = 0.00 \[ \int \left (c \,x^{6}+b \,x^{3}+a \right )^{p}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^6+b*x^3+a)^p,x)

[Out]

int((c*x^6+b*x^3+a)^p,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c x^{6} + b x^{3} + a\right )}^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)^p,x, algorithm="maxima")

[Out]

integrate((c*x^6 + b*x^3 + a)^p, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (c\,x^6+b\,x^3+a\right )}^p \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^3 + c*x^6)^p,x)

[Out]

int((a + b*x^3 + c*x^6)^p, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**6+b*x**3+a)**p,x)

[Out]

Timed out

________________________________________________________________________________________